Logo UPV
Curso

MACHINE LEARNING FOR BIG DATA ANALYTICS

  • Desde: 17/06/19
  • hasta: 21/06/19
  • Campus de Valencia
  • Presencial

Preinscripción desde el 15/05/19

Promovido por:
Escuela Técnica Superior de Ingeniería Informática

Responsable de la actividad:
Silvia Mª Terrasa Barrena


Modalidad

Presencial Online Emisión en directo

20 horas

0 horas

0 horas
Horario

Mañana
Del lunes 17 de junio al viernes 21 de junio, en horario de 9h a 13:30h, con descansode 30 minutos de 11h a 11:30h.

Lugar de impartición
Aula Anita Borg, edificio 1G

Precio Colectivo Plazos Desde Hasta
150,00 € Alumno UPV 1 plazo - -
150,00 € Alumni UPV PLUS o AAA UPV 1 plazo - -
150,00 € Personal UPV 1 plazo - -
200,00 € Público en general 1 plazo - -
150,00 € Antiguo alumno ETSINF 1 plazo - -
150,00 € Colegiados COIICV 1 plazo - -
150,00 € Desempleados 1 plazo - -
150,00 € - Alumno UPV
150,00 € - Personal UPV
200,00 € - Público en general
150,00 € - Antiguo alumno ETSINF
150,00 € - Desempleados
150,00 € - Colegiados COIICV
150,00 € - Alumni UPV PLUS

Objetivos

Los objetivos son varios:

1. Que el alumno descubra el potencial de las técnicas de Machine Learning para el análisis de datos y sobre todo para extracción de información a partir de los datos. Es decir, sacar valor a los datos.
2. Presentar con casos prácticas las técnicas de Machine Learning que actualmente se utilizan en soluciones de análisis de datos, tanto en Big Data Analytics como en Data Science en general.

Dar a conocer una de las herramientas más fáciles de utilizar para aplicar Machine Learning a problemas reales de una manera sencilla, como es Python, Numpy y Scikit-Learn.

Acción formativa dirigida a

Recien titulados que no quieran cursar un máster específicos sobre técnicas de aprendizaje automáticos pero consideren interesante conocer estas técnicas.
Profesionales del sector de las TIC que necesitan ampliar conocimientos en el ámbito del análisis de datos, especialmente de grandes volúmenes de datos, donde estas técnicas les permitirán crear procesos automatizados de extracción de información a partir de los datos.


Profesores

  • Jon Ander Gómez Adrián Profesor/a Titular de Universidad

Temas a desarrollar

1. Introducción a Machine Learning y el Reconocimiento de Patrones.
2. Repaso teoría de la probabilidad y su aplicación a un ejemplo mediante un clasificador del tipo Naive Bayes.
3. Repaso distribución de probabilidad Normal o de Gauss.
4. Estimación por Máxima Verosimilitud.
5. Técnicas de aprendizaje no supervisado.
a. Gaussian Mixture Models. Algoritmo K-Means. Kernel Density Estimation.
6. Funciones Discriminantes Lineales.
7. Support Vector Machines.
8. Redes Neuronales Artificiales. Algoritmo de entrenamiento Backpropagation.
9. Deep Learning, qué son las Redes Neuronales de alta complejidad.
10. Extremely Randomized Trees.


Certificación

Aprovechamiento

Modalidad

PRESENCIAL

Curso

2018-2019

ECTS

2

Campus

Valencia

20 h

Presenciales

0 h

Online

Visita otros cursos relacionados con...

Machine Learning Big Data Data Mining Data Analytics